首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   263篇
  免费   29篇
  国内免费   7篇
  2024年   1篇
  2023年   6篇
  2022年   3篇
  2021年   13篇
  2020年   15篇
  2019年   13篇
  2018年   15篇
  2017年   8篇
  2016年   11篇
  2015年   12篇
  2014年   14篇
  2013年   19篇
  2012年   12篇
  2011年   23篇
  2010年   8篇
  2009年   13篇
  2008年   17篇
  2007年   12篇
  2006年   13篇
  2005年   16篇
  2004年   7篇
  2003年   13篇
  2002年   7篇
  2001年   6篇
  2000年   4篇
  1999年   5篇
  1998年   2篇
  1997年   1篇
  1995年   2篇
  1994年   6篇
  1993年   1篇
  1992年   1篇
排序方式: 共有299条查询结果,搜索用时 15 毫秒
41.
It has become increasingly apparent that the high molecular mass glycosaminoglycan, hyaluronan (HA), is required for many morphogenetic processes during vertebrate development. This renewed understanding of the various developmental roles for HA, has come about largely through the advent of gene targeting approaches in the mouse. To date, mutations have been engineered in the enzymes responsible for biosynthesis and degradation and for those proteins that bind to HA within the extracellular matrix and at the cell surface. Collectively, the phenotypes resulting from these mutations demonstrate that HA is critical for normal mammalian embryogenesis and for various processes in postnatal and adult life (Table 1). In this article we will review our progress in understanding the biological functions for HA through targeted mutagenesis of the HA synthase 2 (Has2) and 3 (Has3) genes. Data that has been obtained from a conventional targeted disruption of the Has2 gene, is presented in an accompanying review by Camenisch and McDonald. More specifically, in this review we will provide an overview of the conditional gene targeting strategy being used to create tissue-specific deficiencies in Has2 function, along with our progress in understanding the role for Has3-dependent HA biosynthesis. Published in 2003.  相似文献   
42.
Hyaluronan (HA) has different biological functions according to its molar mass; short HA fragments are involved in inflammation processes and angiogenesis, whereas native HA is not. Physicochemically, studies of native HA hydrolysis catalyzed by bovine testicular hyaluronidase (HAase) have suggested that kinetic parameters depend on HA chain length. To study the influence of HA chain length in more detail, and to try to correlate the physicochemical and biological properties of HA, HA hydrolysis catalyzed by HAase was used in a new procedure to obtain HA fragments of different molar masses. HA fragments (10-mg scale) with a molar mass from 800 to 300,000 g mol(-1) were prepared, purified using low-pressure size exclusion chromatography (SEC), lyophilized, and characterized in molar mass by either mass spectrometry or HPLC-SEC-multiangle laser light scattering. The polydispersity index of the purified fractions was less than 1.25. The complete set of HA standards obtained was used to calibrate our routine HPLC-SEC device using only a refractive index (RI) detector. We showed that the N-acetyl-d-glucosamine reducing end assay and the calibrated HPLC-SEC-RI gave equivalent kinetic data. In addition, the HPLC-SEC-RI furnished the mass distribution of the polysaccharide during its hydrolysis.  相似文献   
43.
We recorded a series of spectra of sodium hyaluronan (HA) films that were in equilibrium with their surrounding humid atmosphere. The hygrometry of this atmosphere extended from 0 to 0.97% relative humidity. We performed a quantitative analysis of the corresponding series of hydration spectra that are the difference spectra of the film at a defined hygrometry minus the spectrum of the dried film (hygrometry = 0). The principle of this analysis is to use this series of hydration spectra to define a limited number (four) of "elementary hydration spectra" over which we can decompose all hydration spectra with good accuracy. This decomposition, combined with the measurements of the numbers of H(2)O molecules at the origin in these elementary hydration spectra of the three characteristic vibrational bands of H(2)O, allowed us to calculate the hydration number under different relative humidity conditions. This number compares well with that determined by thermogravimetry. Furthermore, the decomposition defines for each hygrometry value which chemical mechanisms represented by elementary hydration spectra are active. This analysis is pursued by determining for the elementary hydration spectra the number of hydrogen bonds established by each of the four alcohol groups found in each disaccharide repeat unit before performing the same analysis for amide and carboxylate groups. These results are later utilized to discuss the structure of HA at various stages of hydration.  相似文献   
44.
For many years, a large body of circumstantial evidence supported the notion that the synovial membrane produced the hyaluronan-rich synovial fluid. A quantitative cytochemical technique for uridine-diphospho glucose dehydrogenase (UDPGD) activity established that fibroblast-like cells on the intimal surface of the synovial lining made a specific contribution to maintaining these glycosaminoglycan levels. Our studies have aimed to determine the mechanisms that control the attainment and persistence of this differentiated phenotype, and have recently focused on their appearance during joint cavity development in the embryonic limb; a process that is dependent upon skeletal movement. These in situ micro-biochemical studies have shown that cells bordering the presumptive joint cavity exhibit raised UDPGD activity, are associated with a matrix rich in hyaluronan and show immobilization-induced loss in such characteristics. Together with complimentary studies in adult joints, this suggests that mechanical stimuli promote the acquisition of this joint line-forming phenotype. For this reason our studies have attempted to identify the 'up-stream' mechano-dependent factors that control these events. Endothelial cells respond to mechanical stimuli by activating, via phosphorylation, mitogen activated protein kinase/extracellular signal-regulated kinase (MAPkinase/ERK). Using phospho-specific anti-ERK-1/2 antibodies we have shown that immunolabelling of developing limbs shows a clear joint line-selective activation during cavitation, with little if any labelling within neighbouring elements, and that this is abolished in immobilized limbs. In an attempt to facilitate the final mechanistic deciphering of these responses we have used an in vitro-based approach and found by Western blotting that active ERK-1/2 expression was increased in cultured articular surface cells following application of dynamic mechanical strain. Intriguingly, the use of a selective inhibitor (PD98059) of ERK activation by its classical activating kinase, Mek, to restrict such strain-induced increases, produced an enhanced strain-related increase in UDPGD mRNA expression. This suggests that mechano-dependent ERK activation serves a feedback regulatory role during differentiation of these cells. Whilst it is clear that these in vitro experiments serve a useful function, it is clear that they generally take little regard of the influence that might be provided by cell-cell and cell-matrix interactions within the developing limb's complex and dynamic environment and architecture. It is therefore imperative that we attempt to bridge the gap between the cell biology of such phenomena on the one hand, and the morphological approach to this same problem on the other.  相似文献   
45.
The gene expression plasmid, pET-Lmluc, for the fusion protein of the hyaluronan binding domain from human TSG-6 [product of tumor necrosis factor (TNF)-stimulated gene-6] and luciferase from Renilla reniformis was constructed. The fused gene was expressed in Escherichia coli and the resulted insoluble Lm-luc fusion protein was purified and refolded to recover both the hyaluronan binding capability and the luciferase activity. Hyaluronan as low as 1 ng ml–1 was detected by using the indirect enzymatic immunological assay with the refolded Lm-luc fusion protein.  相似文献   
46.
This work reports synthesis of pH-responsive alginate/chitosan hydrogel spheres with the average diameter of 2.0 ± 0.05 mm, which contain cefotaxime that is an antibiotic of the cefalosporine group. The spheres provided the cefotaxime encapsulation efficiency of 95 ± 1%. An in vitro release of cefotaxime from the spheres in the media that simulate human biological fluids in peroral delivery conditions was found to be a pH-dependent process. The analysis of cefotaxime release kinetics by the Korsmeyer–Peppas model revealed a non-Fickian mechanism of its diffusion, which may be related to intermolecular interactions occurring between the antibiotic and chitosan. Conductometry, UV spectroscopy, and IR spectroscopy were used to study complexation of chitosan with cefotaxime in aqueous media with varied pH, characterize the composition of the complexes, and calculate their stability constants. The composition of the cefotaxime–chitosan complexes was found to correspond to the 1.0:4.0 and 1.0:2.0 molar ratios of the components at pH 2.0 and 5.6, respectively. Quantum chemical modeling was used to evaluate energy characteristics of chitosan–cefotaxime complexation considering the influence of a solvent.  相似文献   
47.
Jedrzejas MJ  Stern R 《Proteins》2005,61(2):227-238
Human hyaluronidases (Hyals) are a group of five endo-beta-acetyl-hexosaminidase enzymes, Hyal-1, -2, -3, -4, and PH-20, which degrade hyaluronan using a hydrolytic mechanism of action. Catalysis by these Hyals has been shown to follow a double-displacement scheme. This involves a single Glu residue within the enzyme, the only catalytic residue, as the proton donor (acid). Also involved is a carbonyl group of the hyaluronan (HA) N-acetyl-D-glucosamine as a unique type of nucleophile. Thus the substrate participates in the mechanism of action of its own catalysis. An oxocarbonium ion transition state is postulated, but there is no formation of a covalent enzyme-glycan intermediate, as found in most such reactions. The major domain is catalytic and has a distorted (beta/alpha)8 triose phosphate isomerase (TIM) barrel fold. The C-terminal domain is separated by a peptide linker. Each Hyal has a different C-terminal sequence and structure, the function of which is unknown. These unique C-termini may participate in the additional function(s) associated with these multifunctional enzymes.  相似文献   
48.
Several studies indicate that hyaluronan oligosaccharides (oHA) are able to modulate growth and cell survival in solid tumors; however, no studies have been undertaken to analyze the effect of oHA on T-lymphoid disorders. In this work we showed that oHA were able to induce apoptosis in lymphoma cell lines. Since PI3-K/Akt and nuclear factor-kappaB (NF-kappaB) are major factors involved in cell survival and anti-apoptotic pathways in lymphoma cells, we hypothesized that oHA could induce apoptosis through inhibition of these pathways. oHA were identified by a method which allows characterization of length using a high pH anion exchange chromatography with pulse amperometric detection (HPAEC-PAD). oHA inhibited PIP(3) production (principal product of PI3-K activity) and reduced Akt phosphorylation levels, similarly to the specific inhibitor wortmannin. However, treatment with either oHA or wortmannin failed to inhibit constitutive NF-kappaB activity and modulate IkappaBalpha protein levels, suggesting that PI3-K and NF-kappaB signaling pathways are not related in the cell lines used. Cell behavior differed using native hyaluronan (HA), which induced PIP(3) production, Akt phosphorylation, and NF-kappaB activation, although not related with cell survival since treatment with native HA showed no effect on apoptosis. Our results suggest that oHA induce apoptosis by suppression of PI3-K/Akt cell survival pathway without involving NF-kappaB activation, through a mechanism that differs from the one mediated by native HA.  相似文献   
49.
The possibility that a sinusoidal 50 Hz magnetic field with a magnetic flux density of 1 mT can damage MG-63 osteosarcoma spheroids and induce variations in the invasive properties of these three-dimensional model systems after 2 days of exposure was investigated. Specifically, possible damage induced by these fields was examined by determining changes in spheroid surface morphology (light microscopy), growth (spheroid diameter and protein content determination), lactate dehydrogenase release, and reduced glutathione amount. Possible changes in the invasive properties were studied by invasion chambers. The results show no induction of cell damage by ELF fields while invasion chamber assays demonstrate a significant increase in the invasive potential of exposed spheroids. In order to determine if the fibronectin or hyaluronan receptors are involved, Western blot analysis was conducted on these two proteins. No significant variations were observed in either receptor in MG-63 multicellular tumor spheroids.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号